

Chapter 1, David Ritter; 2, John Evans; 3, Wouter Verweirder; 4, Daryl Beggs, Juan Pablo Arancibia Medina; 5, Stephanie Berghaeuser; 6, 10, Wouter Tansens; 7, Danie Pratt; 8, Ken Munyard; 9, Bieke Masselis; p.21, p.93, Wouter Tansens; p.44, Wouter Verweirder; p.48, Leo Storme; p.214, Yu-Sung Chang.

D/2016/45/400 - ISBN 978 94 014 3821 6 - NUR 918

Layout: Jurgen Leemans, Peter Flynn and Bavo Langerock Cover design: Studio Lannoo and Keppie & Keppie © Bieke Masselis, Ivo De Pauw and Publisher Lannoo n.v., Tielt, 2016. LannooCampus is part of the Lannoo Publishing Group

All rights reserved No part of this book may be reproduced, in any form or by any means, without permission in writing from the publisher.

Publisher LannooCampus Erasme Ruelensvest 179 bus 101 B - 3001 Leuven Belgium www.lannoocampus.com.

Content

Acknowledgments		
Chapt	ter 1 · Arithmetic Refresher	13
1.1	Algebra	14
	Real Numbers	14
	Real Polynomials	19
1.2	Equations in one variable	21
	Linear Equations	21
	Quadratic Equations	22
1.3	Exercises	28
Chapt	ter 2 · Linear systems	31
2.1	Definitions	32
2.2	Methods for solving linear systems	34
	Solving by substitution	34
	Solving by elimination	35
2.3	Exercises	40
Chapt	ter 3 · Trigonometry	43
3.1	Angles	44
3.2	Triangles	46
3.3	Right Triangle	50
3.4	Unit Circle	51
3.5	Special Angles	53
	Trigonometric ratios for an angle of $45^\circ = \frac{\pi}{4}$ rad	54
	Trigonometric ratios for an angle of $30^\circ = \frac{\pi}{6}$ rad	54
	Trigonometric ratios for an angle of $60^\circ = \frac{\pi}{3}$ rad	55
	Overview	55
3.6	Pairs of Angles	56
3.7	Sum Identities	56
3.8	Inverse trigonometric functions	59
3.9	Exercises	61

Chapter 4 · Functions		63
4.1	Basic concepts on real functions	64
4.2	Polynomial functions	65
	Linear functions	65
	Quadratic functions	67
4.3	Intersecting functions	69
4.4	Trigonometric functions	71
	Elementary sine function	71
	General sine function	71
	Transversal oscillations	75
4.5	Inverse trigonometric functions	75
4.6	Exercises	79
Chapt	ter 5 · The Golden Section	_ 81
5.1	The Golden Number	82
5.2	The Golden Section	84
	The Golden Triangle	84
	The Golden Rectangle	85
	The Golden Spiral	86
	The Golden Pentagon	88
	The Golden Ellipse	88
5.3	Golden arithmetics	89
	Golden Identities	89
	The Fibonacci Numbers	90
5.4	The Golden Section worldwide	93
5.5	Exercises	95
Chapt	ter 6 · Vectors	97
6.1	The concept of a vector	98
	Vectors as arrows	98
	Vectors as arrays	99
	Free Vectors	102
	Base Vectors	102
6.2	Addition of vectors	103
	Vectors as arrows	103
	Vectors as arrays	103
	Vector addition summarized	104
6.3	Scalar multiplication of vectors	105
	Vectors as arrows	105
	Vectors as arrays	105

	Scalar multiplication summarized	106
	Properties	106
6.4	Vector subtraction	107
	Creating free vectors	107
	Euler's method for trajectories	108
6.5	Decomposition of vectors	109
	Decomposition of a plane vector	109
	Base vectors defined	110
6.6	Dot product	110
	Definition	110
	Geometric interpretation	112
	Orthogonality	114
6.7	Cross product	115
	Definition	116
	Geometric interpretation	118
	Parallelism	120
6.8	Normal vectors	121
6.9	Exercises	123
Chapt	ter 7 · Parameters	125
7.1	Parametric equations	126
7.2	Vector equation of a line	127
7.3	Intersecting straight lines	131
7.4	Vector equation of a plane	133
7.5	Exercises	137
Chapt	ter 8 · Matrices	139
8.1	The concept of a matrix	140
8.2	Determinant of a square matrix	141
8.3	Addition of matrices	143
8.4	Scalar multiplication of a matrix	145
8.5	Transpose of a matrix	146
8.6	Dot product of matrices	146
	Introduction	146
	Condition	148
	Definition	148
	Properties	149
8.7	Inverse of a matrix	151
	Introduction	151
	Definition	151

Conditions	152
Row reduction	152
Matrix inversion	153
Inverse of a product	156
Solving systems of linear equations	157
The Fibonacci operator	159
Exercises	161
ter 9 · Linear transformations	163
Translation	164
Scaling	169
Rotation	172
Rotation in 2D	172
Rotation in 3D	174
Reflection	176
Shearing	178
Composing standard transformations	180
2D rotation around an arbitrary center	183
3D scaling about an arbitrary center	185
2D reflection over an axis through the origin	186
2D reflection over an arbitrary axis	188
3D combined rotation	191
Row-representation	192
Exercises	193
ter 10 · Bezier curves	195
Vector equation of segments	196
Linear Bezier segment	196
Quadratic Bezier segment	197
Cubic Bezier segment	198
Bezier segments of higher degree	200
De Casteljau algorithm	201
Bezier curves	202
Concatenation	202
Linear transformations	204
Illustrations	204
Matrix representation	206
Linear Bezier segment	206
Quadratic Bezier segment	207
Cubic Bezier segment	208
	Conditions Row reduction Matrix inversion Inverse of a product Solving systems of linear equations The Fibonacci operator Exercises cer 9 · Linear transformations Translation Scaling Rotation Rotation in 2D Rotation in 3D Reflection Shearing Composing standard transformations 2D rotation around an arbitrary center 3D scaling about an arbitrary center 2D reflection over an axis through the origin 2D reflection over an arbitrary axis 3D combined rotation <i>Row-representation</i> <i>Exercises</i> cer 10 · Bezier curves Vector equation of segments Linear Bezier segment Quadratic Bezier segment Ever curves Concatenation Linear transformations Illustrations Matrix representation Linear Bezier segment Quadratic Bezier segment Cubic Bezier segment Cubic Bezier segment Cubic Bezier segment Cubic Bezier segment Quadratic Bezier segment Cubic Bezier segment

10.5 B-splines	210
Cubic B-splines	210
Matrix representation	211
De Boor's algorithm	213
10.6 Exercises	215
Annex A · Real numbers in computers	217
A.1 Scientific notation	217
A.2 The decimal computer	217
A.3 Special values	218
Annex B · Notations and Conventions	219
B.1 Alphabets	219
Latin alphabet	219
Greek alphabet	219
B.2 Mathematical symbols	220
Sets	220
Mathematical symbols	221
Mathematical keywords	221
Remarkable numbers	222
Annex C · Companion website	223
C.1 Interactivities	223
C.2 Answers	223
Bibliography	224
Index	227

Acknowledgments

We hereby insist to thank a lot of people who made this book possible: Prof. Dr. Leo Storme, Wim Serras, Wouter Tansens, Wouter Verweirder, Koen Samyn, Hilde De Maesschalck, Ellen Deketele, Conny Meuris, Hans Ameel, Dr. Rolf Mertig, Dick Verkerck, ir. Gose Fischer, Prof. Dr. Fred Simons, Sofie Eeckeman, Dr. Luc Gheysens, Dr. Bavo Langerock, Wauter Leenknecht, Marijn Verspecht, Sarah Rommens, Prof. Dr. Marcus Greferath, Dr. Cornelia Roessing, Tim De Langhe, Niels Janssens, Peter Flynn, Jurgen Leemans, Jan Middendorp, Hilde Vanmechelen, Jef De Langhe, Ann Deraedt, Rita Vanmeirhaeghe, Prof. Dr. Jan Van Geel, Dr. Ann Dumoulin, Bart Uyttenhove, Rik Leenknegt, Peter Verswyvelen, Roel Vandommele, ir. Lode De Geyter, Bart Leenknegt, Olivier Rysman, ir. Johan Gielis, Frederik Jacques, Kristel Balcaen, ir. Wouter Gevaert, Bart Gardin, Dieter Roobrouck, Dr. Yu-Sung Chang (*WolframDemonstrations*), Steven Verborgh, Ingrid Viaene, Thomas Vanhoutte, Fries Carton and anyone whom we might have forgotten!

As this chapter offers all necessary mathematical skills for a full mastering of all further topics explained in this book, we strongly recommend it. To serve its purpose, the successive paragraphs below refresh some required aspects of mathematical language as used on the applied level.

1.1 Algebra

REAL NUMBERS

We typeset the set of:

- \triangleright natural numbers (unsigned integers) as \mathbb{N} including zero,
- \triangleright integer numbers as \mathbb{Z} including zero,
- \triangleright rational numbers as \mathbb{Q} including zero,
- \triangleright real numbers (floats) as \mathbb{R} including zero.

All the above make a chain of subsets: $\mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R}$.

To avoid possible confusion, we outline a brief glossary of mathematical terms. We recall that using the correct mathematical terms reflects a correct mathematical thinking. Putting down ideas in the correct words is of major importance for a profound insight.

Sets

- ▷ We recall writing all **subsets** in between braces, e.g. the **empty set** appears as {}.
- ▷ We define a **singleton** as any subset containing only one element, e.g. $\{5\} \subset \mathbb{N}$, as a subset of natural numbers.
- ▷ We define a **pair** as any subset containing just two elements, e.g. $\{115, -4\} \subset \mathbb{Z}$, as a subset of integers. In programming the boolean values *true* and *false* make up a pair {*true*, *false*} called the boolean set which we typeset as \mathbb{B} .
- ▷ We define $\mathbb{Z}^- = \{..., -3, -2, -1\}$ whenever we need negative integers only. We express symbolically that -1234 is an **element** of \mathbb{Z}^- by typesetting $-1234 \in \mathbb{Z}^-$.
- ▷ We typeset the **setminus** operator to delete elements from a set by using a backslash, e.g. $\mathbb{N} \setminus \{0\}$ reading all natural numbers except zero, $\mathbb{Q} \setminus \mathbb{Z}$ meaning all pure rational numbers after all integer values left out and $\mathbb{R} \setminus \{0,1\}$ expressing all real numbers apart from zero and one.

Calculation basics

operation	example	a	Ь	с
to add	a+b=c	term	term	sum
to subtract	a-b=c	term	term	difference
to multiply	$a \cdot b = c$	factor	factor	product
to divide	$\frac{a}{b} = c, b \neq 0$	numerator	divisor or denominator	quotient or fraction
to exponentiate	$a^b = c$	base	exponent	power
to take root	$\sqrt[b]{a} = c$	radicand	index	radical

We write the **opposite** of a real number r as -r, defined by the sum r + (-r) = 0. We typeset the **reciprocal** of a nonzero real number r as $\frac{1}{r}$ or r^{-1} , defined by the product $r \cdot r^{-1} = 1$.

We define **subtraction** as equivalent to adding the opposite: a - b = a + (-b). We define **division** as equivalent to multiplying with the reciprocal: $a : b = a \cdot b^{-1}$.

When we mix operations we need to apply priority rules for them. There is a fixed priority list 'PEMDAS' in performing mixed operations in \mathbb{R} that can easily be memorized by 'Please Excuse My Dear Aunt Sally'.

- ▷ First process all that is delimited in between Parentheses,
- ▷ then Exponentiate,
- ▷ then Multiply and Divide from left to right,
- ▷ finally Add and Subtract from left to right.

Now we discuss the **distributive law** ruling within \mathbb{R} , which we define as threading a 'superior' operation over an 'inferior' operation. Conclusively, distributing requires two *different* operations.

Hence we distribute *exponentiating* over *multiplication* as in $(a \cdot b)^3 = a^3 \cdot b^3$. Likewise rules *multiplying* over *addition* as in $3 \cdot (a+b) = 3 \cdot a + 3 \cdot b$.

However we should never stumble on this 'Staircase of Distributivity' by stepping it too fast:

$$(a+b)^{3} \neq a^{3} + b^{3},$$
$$\sqrt{a+b} \neq \sqrt{a} + \sqrt{b},$$
$$\sqrt{x^{2} + y^{2}} \neq x + y.$$

Fractions

A **fraction** is what we call any rational number written as $\frac{t}{n}$ given $t, n \in \mathbb{Z}$ and $n \neq 0$, wherein *t* is called the **numerator** and *n* the **denominator**. We define the reciprocal of a nonzero fraction $\frac{t}{n}$ as $\frac{1}{\frac{t}{n}} = \frac{n}{t}$ or as the power $\left(\frac{t}{n}\right)^{-1}$. We define the opposite fraction as $-\frac{t}{n} = \frac{-t}{n} = \frac{t}{-n}$. We summarize fractional arithmetics:

sum	$\frac{t}{n} + \frac{a}{b} = \frac{t \cdot b + n \cdot a}{n \cdot b},$
difference	$\frac{t}{n} - \frac{a}{b} = \frac{t \cdot b - n \cdot a}{n \cdot b},$
product	$\frac{t}{n} \cdot \frac{a}{b} = \frac{t \cdot a}{n \cdot b},$
division	$\frac{\frac{t}{n}}{\frac{a}{b}} = \frac{t}{n} \cdot \frac{b}{a},$
exponentiation	$\left(\frac{t}{n}\right)^m = \frac{t^m}{n^m},$
singular fractions	$rac{1}{0} = \pm \infty$ infinity,
	$\frac{0}{0} = ?$ indeterminate.

Powers

We define a **power** as any real number written as g^m , wherein g is called its **base** and m its **exponent**. The opposite of g^m is simply $-g^m$. The reciprocal of g^m is $\frac{1}{g^m} = g^{-m}$, given $g \neq 0$.

According to the exponent type we distinguish between:

$$g^{-3} = \frac{1}{g^3} = \frac{1}{g \cdot g \cdot g} \qquad -3 \in \mathbb{Z},$$
$$g^{\frac{1}{2}} = \sqrt[3]{g} = w \Leftrightarrow w^3 = g \qquad \qquad \frac{1}{g} \in \mathbb{O}$$

$$g^{0} = 1$$

$$g^{0} = 1$$

$$g^{0} = 1$$

$$g \neq 0.$$

Whilst calculating powers we may have to:

multiply $g^3 \cdot g^2 = g^{3+2} = g^5$, divide $\frac{g^3}{g^2} = g^3 \cdot g^{-2} = g^{3-2} = g^1$, exponentiate $(g^3)^2 = g^{3\cdot 2} = g^6$ them.

We insist on avoiding typesetting radicals like $\sqrt[7]{g^3}$ and strongly recommend their contemporary notation using radicand g and exponent $\frac{3}{7}$, consequently exponentiating g to $g^{\frac{3}{7}}$. We recall the fact that all square roots are non-negative numbers, $\sqrt{a} = a^{\frac{1}{2}} \in \mathbb{R}^+$ for $a \in \mathbb{R}^+$.

As well knowing the above exponent types as understanding the above rules to calculate them are inevitable to use powers successfully. We advise memorizing the integer squares running from $1^2 = 1, 2^2 = 4, ...,$ up to $15^2 = 225, 16^2 = 256$ and the integer cubes running from $1^3 = 1, 2^3 = 8, ...,$ up to $7^3 = 343, 8^3 = 512$ in order to easily recognize them.

Recall that the only way out of any power is exponentiating with its reciprocal exponent. For this purpose we need to exponentiate both left hand side and right hand side of any given relation (see also paragraph 1.2).

Example: Find x when $\sqrt[7]{x^3} = 5$ by exponentiating this power.

$$x^{\frac{3}{7}} = 5 \Longleftrightarrow \left(x^{\frac{3}{7}}\right)^{\frac{7}{3}} = (5)^{\frac{7}{3}} \Longleftrightarrow x \approx 42.7494.$$

We emphasize the above strategy as the only successful one to free base x from its exponent, yielding its correct expression numerically approximated if we like to.

Example: Find *x* when $x^2 = 5$ by exponentiating this power.

$$x^{2} = 5 \iff (x^{2})^{\frac{1}{2}} = (5)^{\frac{1}{2}} \text{ or } -(5)^{\frac{1}{2}} \iff x \approx 2.23607 \text{ or } -2.23607.$$

We recall the above double solution whenever we free base x from an *even* exponent, yielding their correct expression as accurate as we like to.

Mathematical expressions

Composed mathematical expressions can often seem intimidating or cause confusion. To gain transparancy in them, we firstly recall indexed variables which we define as subscripted to count them: $x_1, x_2, x_3, x_4, \ldots, x_{99999}, x_{100000}, \ldots$, and $\alpha_0, \alpha_1, \alpha_2, \alpha_3, \alpha_4, \ldots$. It is common practice in industrial research to use thousands of variables, so just picking unindexed characters would be insufficient. Taking our own alphabet as an example, it would only provide us with 26 characters.

We define finite expressions as composed of (mathematical) operations on objects (numbers, variables or structures). We can for instance analyze the expression $(3a + x)^4$ by drawing its **tree form**. This example reveals a Power having exponent 4 and a subexpression in its base. The base itself yields a sum of the variable x Plus another subexpression. This final subexpression shows the product 3 Times a.

Let us also evaluate this expression $(3a + x)^4$. Say a = 1, then we see our expression partly collaps to $(3+x)^4$. If we on top of this assign x = 2, our expression then finally turns to the numerical value $(3+2)^4 = 5^4 = 625$.

When we expand this power to its **pure sum expression** $81a^4 + 108a^3x + 54a^2x^2 + 12ax^3 + x^4$, we did nothing but *reshape* its **pure product expression** $(3a + x)^4$.

We warn that trying to solve this expression - which is not a relation - is completely in vain. Recall that inequalities, equations and systems of equations or inequalities are the only objects in the universe we can (try to) solve mathematically.

Relational operators

We also refresh the use of correct terms for inequalities and equations.

We define an **inequality** as any *variable* expression comparing a left hand side to a right hand side by applying the 'is-(strictly)-less-than' or by applying the 'is-(strictly)-greater-than' operator. For example, we can read $(3a + x)^4 \leq (b+4)(x+3)$ containing variables *a*, *x*, *b*. Consequently we may solve such inequality for any of the unknown quantities *a*, *x* or *b*.

We define an **equation** as any *variable* expression comparing a left hand side to a right hand side by applying the 'is-equal-to' operator. For example $(3a + x)^4 = (b+4)(x+3)$ is an equation containing variables *a*, *x*, *b*. Consequently we also may solve equations for

any of the unknown quantities a, x or b.

We define an **equality** as a constant relational expression being *true*, e.g. 7 = 7. We define a **contradiction** as a constant relational expression being *false*, e.g. -10 > 5.

REAL POLYNOMIALS

We elaborate upon the mathematical environment of polynomials over the real numbers in their variable or indeterminate *x*, a set we denote with $\mathbb{R}_{[x]}$.

▷ Monomials

We define a **monomial** in *x* as any product ax^n , given $a \in \mathbb{R}$ and $n \in \mathbb{N}$. We can extend this concept to several indeterminates x, y, z, ... like the monomials $3(xy)^6$ and $3(x^2y^3z^6)$ are.

We define the **degree** of a monomial ax^n as its natural exponent $n \in \mathbb{N}$ to the **indeterminate part** *x*. We say constant numbers are monomials of degree 0 and linear terms are monomials of degree 1. We say squares to have degree 2 and cubes to have degree 3, followed by monomials of higher degree.

For instance the real monomial $-\sqrt{12}x^6$ is of degree 6. Extending this concept, the monomial $3(xy)^6$ is of degree 6 in *xy* and the monomial $3(x^2y^3z^6)^9$ is of degree 9 in $x^2y^3z^6$.

We define **monomials of the same kind** as those having an identical indeterminate part. For instance both $\frac{5}{7}x^6$ and $-\sqrt{12}x^6$ are of the same kind. Extending the concept, likewise $\frac{5}{7}x^3y^5z^2$ and $-\sqrt{12}x^3y^5z^2$ are of the same kind.

All basic operations on monomials emerge simply from applying the calculation rules of fractions and powers.

▷ Polynomials

We define a **polynomial** V(x) as any sum of monomials. We define the **degree** of V(x) as the maximal exponent $m \in \mathbb{N}$ to the indeterminate variable *x*. For instance the real polynomial

$$V(x) = 17x^{2} + \frac{1}{4}x^{3} + 6x - 7x^{2} - \sqrt{12}x^{6} - 13x - 1,$$

is of degree 6.

Whenever monomials of the same kind appear in it, we can simplify the polynomial. For instance our polynomial simplifies to $V(x) = 10x^2 + \frac{1}{4}x^3 - 7x - \sqrt{12}x^6 - 1$.

Moreover, we can sort any given polynomial either in an ascending or descending way according to its powers in x. Sorting our polynomial V(x) in an ascending way

yields $V(x) = -1 - 7x + 10x^2 + \frac{1}{4}x^3 - \sqrt{12}x^6$. Sorting V(x) in a descending way yields $V(x) = -\sqrt{12}x^6 + \frac{1}{4}x^3 + 10x^2 - 7x - 1$.

Eventually we are able to evaluate any polynomial, getting a numerical value from it. For instance evaluating V(x) in x = -1, yields $V(-1) = -\sqrt{12}(-1)^6 + \frac{1}{4}(-1)^3 + 10(-1)^2 - 7(-1) - 1 = -\sqrt{12} - \frac{1}{4} + 16 = \frac{63}{4} - 2\sqrt{3} \in \mathbb{R}$.

▷ Basic operations

Adding two monomials of the same kind: we add their coefficients and keep their indeterminate part

$$5a^2 - 3a^2 = (5 - 3)a^2 = 2a^2.$$

Multiplying two monomials of any kind: we multiply both their coefficients and their indeterminate parts

$$-5ab \cdot \frac{7}{4}a^2b^3 = -5 \cdot \frac{7}{4} \cdot a^{1+2}b^{1+3} = \frac{-35}{4}a^3b^4.$$

Dividing two monomials: we divide both their coefficients and their indeterminate parts

$$\frac{-8a^6b^4}{-4a^4} = \frac{-8}{-4}a^{6-4}b^{4-0} = 2a^2b^4.$$

Exponentiating a monomial: we exponentiate each and every factor in the monomial

$$(-2a^2b^4)^3 = (-2)^3(a^2)^3(b^4)^3 = -8a^6b^{12}.$$

Adding or subtracting polynomials: we add or subtract all monomials of the same kind

$$(x^{2} - 4x + 8) - (2x^{2} - 3x - 1) = x^{2} - 4x + 8 - 2x^{2} + 3x + 1 = -x^{2} - x + 9.$$

Multiplying two polynomials: we multiply each monomial of the first polynomial with each monomial of the second polynomial and simplify all those products to the resulting product polynomial

$$(2x^{2} + 3y) \cdot (4x^{2} - y) = 2x^{2}(4x^{2} - y) + 3y(4x^{2} - y)$$

$$= 2x^{2} \cdot 4x^{2} + 2x^{2} \cdot (-y) + 3y \cdot 4x^{2}$$

$$+ 3y \cdot (-y)$$

$$= 8x^{4} - 2x^{2}y + 12x^{2}y - 3y^{2}$$

$$= 8x^{4} + 10x^{2}y - 3y^{2}.$$

1.2 Equations in one variable

Anticipating this paragraph we refresh some vocabulary for it. A **solution** is any value assigned to the variable that turns the given equation into an *equality* (being *true*). The **scope** of an equation is any number set in which the equation resides, realizing it will be most likely \mathbb{R} . We define the **solution set** as the set containing all legal solutions to an equation. This solution set always is a subset of the scope of the equation.

LINEAR EQUATIONS

A **linear equation** is an algebraic equation of degree one, referring to the maximum natural exponent of the unknown quantity. By simplifying we can always standardize any linear equation to

$$ax + b = 0, \tag{1.1}$$

given $a \in \mathbb{R} \setminus \{0\}$ and $b \in \mathbb{R}$. We cite 3x + 7 = 22, 5x - 9d = c and 5(x-4) + x = -2(x+2) as examples of linear equations, and $3x^2 + 7 = 22$ and 5ab - 9b = c as counterexamples. The adjective 'linear' originates from the Latin word 'linea' meaning (straight) line as referring to the graph of a linear function (see chapter 4).

We solve a linear equation for its unknown part by rewriting the entire equation until its shape exposes the solution explicitly.

We recall easily the required rules for rewriting a linear equation by the metaphor denoting a linear equation as a 'pair of scales'. This way we should never forget to keep the equation's balance: whatever operation we apply, it has to act on both sides of the equals-sign. If we add (or subtract) to the left hand 'scale' than we are obliged to add (or subtract) the same term to the right hand 'scale'. If we multiply (or divide) the left hand side, than we are likewise

obliged to multiply (or divide) the right hand side with the same factor. If not, our equation would loose its balance just like a pair of scales would. We realize that our metaphor covers all usual 'rules' to handle linear equations.

The reason we perform certain rewrite steps depends on which variable we are aiming for. This is called *strategy*. Solving the equation for a different variable implies a different sequence of rewrite steps. *Example*: We solve the equation 5(x-4) + x = -2(x+2) for x. Firstly, we apply the distributive law: 5x - 20 + x = -2x - 4. Secondly, we put all terms dependent of x to the left hand side and the constant numbers to the right hand side 5x + x + 2x = -4 + 20. Thirdly, we simplify both sides 8x = 16. Finally, we find x = 2 leading to the solution singleton $\{2\}$.

QUADRATIC EQUATIONS

Handling quadratic expressions and solving quadratic equations are useful basics in order to study topics in multimedia, digital art and technology.

▷ Expanding products

We refresh **expanding** a product as (repeatedly) applying the distributive law until the initial expression ends up as a pure *sum* of terms. Note that our given polynomial V(x) itself does not change: we just shift its appearance to a pure sum. We illustrate this concept through V(x) = (2x - 3)(4 - x).

$$(2x-3)(4-x) = (2x-3) \cdot 4 + (2x-3) \cdot (-x)$$

= (8x-12) + (-2x²+3x)
= -2x² + 11x?12.

Other examples are

$$5a(2a^2 - 3b) = 5a \cdot 2a^2 - 5a \cdot 3b = 10a^3 - 15ab$$

and

$$4\left(x-\frac{1}{2}\right)\left(x+\frac{13}{2}\right) = (4x-2)\left(x+\frac{13}{2}\right)$$
$$= (4x-2)\cdot x + (4x-2)\cdot \frac{13}{2}$$
$$= 4x^2 - 2x + 26x - 13 = 4x^2 + 24x - 13$$

▷ Factoring polynomials

We define **factoring** a polynomial as decomposing it into a pure *product* of (as many as possible) factors. Note that our given polynomial V(x) itself does not change: we just shift its appearance to a pure product. Our **trinomial** $V(x) = -2x^2 + 11x - 12$ just shifts its appearance to the pure product V(x) = (2x-3)(4-x) when factored. It merely shows that the product (2x-3)(4-x) is a factorization of the trinomial $-2x^2 + 11x - 12$.