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14 MULTIMEDIA MATHS

As this chapter offers all necessary mathematical skills for a full mastering of all further
topics explained in this book, we strongly recommend it. To serve its purpose, the succes-
sive paragraphs below refresh some required aspects of mathematical language as used
on the applied level.

1.1 Algebra

Real Numbers

We typeset the set of:

� natural numbers (unsigned integers) as N including zero,

� integer numbers as Z including zero,

� rational numbers as Q including zero,

� real numbers (floats) as R including zero.

All the above make a chain of subsets: N⊂ Z⊂Q⊂ R.

To avoid possible confusion, we outline a brief glossary of mathematical terms. We recall
that using the correct mathematical terms reflects a correct mathematical thinking. Putting
down ideas in the correct words is of major importance for a profound insight.

Sets
� We recall writing all subsets in between braces, e.g. the empty set appears as {}.

� We define a singleton as any subset containing only one element, e.g. {5} ⊂ N, as
a subset of natural numbers.

� We define a pair as any subset containing just two elements, e.g. {115,−4} ⊂ Z,
as a subset of integers. In programming the boolean values true and false make up
a pair {true, f alse} called the boolean set which we typeset as B.

� We define Z− = {. . . ,−3,−2,−1} whenever we need negative integers only. We
express symbolically that −1234 is an element of Z− by typesetting −1234 ∈ Z−.

� We typeset the setminus operator to delete elements from a set by using a back-
slash, e.g. N\{0} reading all natural numbers except zero, Q\Z meaning all pure
rational numbers after all integer values left out and R \ {0,1} expressing all real
numbers apart from zero and one.
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Calculation basics

operation example a b c

to add a+b = c term term sum

to subtract a−b = c term term difference

to multiply a ·b = c factor factor product

to divide a
b = c, b �= 0 divisor quotient

numerator or denominator or fraction

to exponentiate ab = c base exponent power

to take root b
√

a = c radicand index radical

We write the opposite of a real number r as −r, defined by the sum r+(−r) = 0. We
typeset the reciprocal of a nonzero real number r as 1

r or r−1, defined by the product
r · r−1 = 1.

We define subtraction as equivalent to adding the opposite: a−b = a+(−b). We define
division as equivalent to multiplying with the reciprocal: a : b = a ·b−1.

When we mix operations we need to apply priority rules for them. There is a fixed priority
list ‘PEMDAS’ in performing mixed operations in R that can easily be memorized by
‘Please Excuse My Dear Aunt Sally’.

� First process all that is delimited in between Parentheses,

� then Exponentiate,

� then Multiply and Divide from left to right,

� finally Add and Subtract from left to right.
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Now we discuss the distributive law ruling
within R, which we define as threading a ‘su-
perior’ operation over an ‘inferior’ operation.
Conclusively, distributing requires two different
operations.

Hence we distribute exponentiating over multi-
plication as in (a ·b)3 = a3 ·b3. Likewise rules
multiplying over addition as in 3 · (a+b) =
3 ·a+3 ·b.

However we should never stumble on this
‘Staircase of Distributivity’ by stepping it too fast:

(a+b)3 �= a3 +b3,

√
a+b �=

√
a+

√
b,

√
x2 + y2 �= x+ y.

Fractions
A fraction is what we call any rational number written as t

n given t,n ∈ Z and n �= 0,
wherein t is called the numerator and n the denominator. We define the reciprocal of a

nonzero fraction t
n as 1

t
n
= n

t or as the power
(

t
n

)−1
. We define the opposite fraction as

− t
n = −t

n = t
−n . We summarize fractional arithmetics:

sum t
n +

a
b = t·b+n·a

n·b ,

difference t
n −

a
b = t·b−n·a

n·b ,

product t
n ·

a
b = t·a

n·b ,

division
t
n
a
b
= t

n ·
b
a ,

exponentiation
( t

n

)m
= tm

nm ,

singular fractions 1
0 =±∞ infinity,
0
0 =? indeterminate.

Powers
We define a power as any real number written as gm , wherein g is called its base and m
its exponent. The opposite of gm is simply −gm. The reciprocal of gm is 1

gm = g−m, given
g �= 0.
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According to the exponent type we distinguish between:

g3 = g ·g ·g 3 ∈ N,

g−3 = 1
g3 = 1

g·g·g −3 ∈ Z,

g
1
3 = 3

√
g = w ⇔ w3 = g 1

3 ∈Q,

g0 = 1 g �= 0.

Whilst calculating powers we may have to:

multiply g3 ·g2 = g3+2 = g5,

divide g3

g2 = g3 ·g−2 = g3−2 = g1,

exponentiate
(
g3
)2

= g3·2 = g6 them.

We insist on avoiding typesetting radicals like 7
√

g3 and strongly recommend their con-
temporary notation using radicand g and exponent 3

7 , consequently exponentiating g to

g
3
7 . We recall the fact that all square roots are non-negative numbers,

√
a = a

1
2 ∈ R+ for

a ∈ R+.

As well knowing the above exponent types as understanding the above rules to calculate
them are inevitable to use powers successfully. We advise memorizing the integer squares
running from 12 = 1, 22 = 4, . . ., up to 152 = 225, 162 = 256 and the integer cubes running
from 13 = 1, 23 = 8, . . ., up to 73 = 343, 83 = 512 in order to easily recognize them.

Recall that the only way out of any power is exponentiating with its reciprocal exponent.
For this purpose we need to exponentiate both left hand side and right hand side of any
given relation (see also paragraph 1.2).

Example: Find x when 7√x3 = 5 by exponentiating this power.

x
3
7 = 5 ⇐⇒

(
x

3
7

) 7
3
= (5)

7
3 ⇐⇒ x ≈ 42.7494.

We emphasize the above strategy as the only successful one to free base x from its expo-
nent, yielding its correct expression numerically approximated if we like to.

Example: Find x when x2 = 5 by exponentiating this power.

x2 = 5 ⇐⇒
(
x2) 1

2 = (5)
1
2 or − (5)

1
2 ⇐⇒ x ≈ 2.23607 or−2.23607.

We recall the above double solution whenever we free base x from an even exponent,
yielding their correct expression as accurate as we like to.



18 MULTIMEDIA MATHS

Mathematical expressions
Composed mathematical expressions can often seem intimidating or cause confusion.
To gain transparancy in them, we firstly recall indexed variables which we define as
subscripted to count them: x1,x2,x3,x4, . . . ,x99999,x100000, . . ., and α0,α1,α2,α3,α4, . . . .
It is common practice in industrial research to use thousands of variables, so just picking
unindexed characters would be insufficient. Taking our own alphabet as an example, it
would only provide us with 26 characters.

We define finite expressions as composed of (math-
ematical) operations on objects (numbers, variables
or structures). We can for instance analyze the ex-
pression (3a+ x)4 by drawing its tree form. This
example reveals a Power having exponent 4 and a
subexpression in its base. The base itself yields a
sum of the variable x Plus another subexpression.
This final subexpression shows the product 3 Times
a.

Let us also evaluate this expression (3a+ x)4. Say
a = 1, then we see our expression partly collaps
to (3+ x)4. If we on top of this assign x = 2, our
expression then finally turns to the numerical value
(3+2)4 = 54 = 625.

When we expand this power to its pure sum expression 81a4 + 108a3x + 54a2x2 +

12ax3 + x4, we did nothing but reshape its pure product expression (3a+ x)4.

We warn that trying to solve this expression - which is not a relation - is completely in
vain. Recall that inequalities, equations and systems of equations or inequalities are the
only objects in the universe we can (try to) solve mathematically.

Relational operators
We also refresh the use of correct terms for inequalities and equations.

We define an inequality as any variable expression comparing a left hand side to a right
hand side by applying the ‘is-(strictly)-less-than’ or by applying the ‘is-(strictly)-greater-
than’ operator. For example, we can read (3a+ x)4 � (b+4)(x+3) containing variables
a, x, b. Consequently we may solve such inequality for any of the unknown quantities a,x
or b.

We define an equation as any variable expression comparing a left hand side to a right
hand side by applying the ‘is-equal-to’ operator. For example (3a+ x)4 = (b+4)(x+3)
is an equation containing variables a, x, b. Consequently we also may solve equations for
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any of the unknown quantities a,x or b.

We define an equality as a constant relational expression being true, e.g. 7= 7. We define
a contradiction as a constant relational expression being false, e.g. −10 > 5.

Real Polynomials

We elaborate upon the mathematical environment of polynomials over the real numbers
in their variable or indeterminate x, a set we denote with R[x].

� Monomials

We define a monomial in x as any product axn, given a ∈ R and n ∈ N. We can
extend this concept to several indeterminates x,y,z, . . . like the monomials 3(xy)6

and 3(x2y3z6) are.

We define the degree of a monomial axn as its natural exponent n ∈ N to the inde-
terminate part x. We say constant numbers are monomials of degree 0 and linear
terms are monomials of degree 1. We say squares to have degree 2 and cubes to
have degree 3, followed by monomials of higher degree.

For instance the real monomial −
√

12x6 is of degree 6. Extending this concept, the
monomial 3(xy)6 is of degree 6 in xy and the monomial 3(x2y3z6)9 is of degree 9 in
x2y3z6.

We define monomials of the same kind as those having an identical indeterminate
part. For instance both 5

7 x6 and −
√

12x6 are of the same kind. Extending the
concept, likewise 5

7 x3y5z2 and −
√

12x3y5z2 are of the same kind.

All basic operations on monomials emerge simply from applying the calculation
rules of fractions and powers.

� Polynomials

We define a polynomial V (x) as any sum of monomials. We define the degree of
V (x) as the maximal exponent m ∈ N to the indeterminate variable x. For instance
the real polynomial

V (x) = 17x2 +
1
4

x3 +6x−7x2 −
√

12x6 −13x−1,

is of degree 6.

Whenever monomials of the same kind appear in it, we can simplify the polynomial.
For instance our polynomial simplifies to V (x) = 10x2 + 1

4 x3 −7x−
√

12x6 −1.

Moreover, we can sort any given polynomial either in an ascending or descending
way according to its powers in x. Sorting our polynomial V (x) in an ascending way
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yields V (x) = −1− 7x+ 10x2 + 1
4 x3 −

√
12x6. Sorting V (x) in a descending way

yields V (x) =−
√

12x6 + 1
4 x3 +10x2 −7x−1.

Eventually we are able to evaluate any polynomial, getting a numerical value from
it. For instance evaluating V (x) in x=−1, yields V (−1)=−

√
12(−1)6+ 1

4 (−1)3+

10(−1)2 −7(−1)−1 =−
√

12− 1
4 +16 = 63

4 −2
√

3 ∈ R.

� Basic operations

Adding two monomials of the same kind: we add their coefficients and keep their
indeterminate part

5a2 −3a2 = (5−3)a2 = 2a2.

Multiplying two monomials of any kind: we multiply both their coefficients and
their indeterminate parts

−5ab · 7
4

a2b3 =−5 · 7
4
·a1+2b1+3 =

−35
4

a3b4.

Dividing two monomials: we divide both their coefficients and their indeterminate
parts

−8a6b4

−4a4 =
−8
−4

a6−4b4−0 = 2a2b4.

Exponentiating a monomial: we exponentiate each and every factor in the mono-
mial (

−2a2b4)3
= (−2)3(a2)3(b4)3 =−8a6b12.

Adding or subtracting polynomials: we add or subtract all monomials of the same
kind

(x2 −4x+8)− (2x2 −3x−1) = x2 −4x+8−2x2 +3x+1 =−x2 − x+9.

Multiplying two polynomials: we multiply each monomial of the first polynomial
with each monomial of the second polynomial and simplify all those products to
the resulting product polynomial

(2x2 +3y) · (4x2 − y) = 2x2(4x2 − y)+3y(4x2 − y)

= 2x2 ·4x2 +2x2 · (−y)+3y ·4x2

+3y · (−y)

= 8x4 − 2x2y + 12x2y −3y2

= 8x4 +10x2y−3y2.
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1.2 Equations in one variable

Anticipating this paragraph we refresh some vocabulary for it. A solution is any value
assigned to the variable that turns the given equation into an equality (being true). The
scope of an equation is any number set in which the equation resides, realizing it will be
most likely R. We define the solution set as the set containing all legal solutions to an
equation. This solution set always is a subset of the scope of the equation.

Linear Equat ions

A linear equation is an algebraic equation of degree one, referring to the maximum
natural exponent of the unknown quantity. By simplifying we can always standardize any
linear equation to

ax+b = 0, (1.1)

given a∈R\{0} and b∈R. We cite 3x+7= 22,5x−9d = c and 5(x−4)+x=−2(x+2)
as examples of linear equations, and 3x2 +7 = 22 and 5ab−9b = c as counterexamples.
The adjective ‘linear’ originates from the Latin word ‘linea’ meaning (straight) line as
referring to the graph of a linear function (see chapter 4).

We solve a linear equation for its unknown part by rewriting the entire equation until its
shape exposes the solution explicitly.

We recall easily the required rules for rewriting a
linear equation by the metaphor denoting a linear
equation as a ‘pair of scales’. This way we should
neverforget tokeeptheequation’sbalance: whatever
operation we apply, it has to act on both sides of the
equals-sign. If we add (or subtract) to the left hand
‘scale’ than we are obliged to add (or subtract) the
same term to the right hand ‘scale’. If we multiply
(or divide) the left hand side, than we are likewise
obliged to multiply (or divide) the right hand side with the same factor. If not, our equation
would loose its balance just like a pair of scales would. We realize that our metaphor covers
all usual ‘rules’ to handle linear equations.

The reason we perform certain rewrite steps depends on which variable we are aiming for.
This is called strategy. Solving the equation for a different variable implies a different
sequence of rewrite steps.
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Example: We solve the equation 5(x− 4)+ x = −2(x+ 2) for x. Firstly, we apply the
distributive law: 5x− 20+ x = −2x− 4. Secondly, we put all terms dependent of x to
the left hand side and the constant numbers to the right hand side 5x+ x+2x =−4+20.
Thirdly, we simplify both sides 8x = 16. Finally, we find x = 2 leading to the solution
singleton {2}.

Quadrat ic Equat ions

Handling quadratic expressions and solving quadratic equations are useful basics in order
to study topics in multimedia, digital art and technology.

� Expanding products

We refresh expanding a product as (repeatedly) applying the distributive law until
the initial expression ends up as a pure sum of terms. Note that our given polyno-
mial V (x) itself does not change: we just shift its appearance to a pure sum. We
illustrate this concept through V (x) = (2x−3)(4− x).

(2x−3)(4− x) = (2x−3) ·4+(2x−3) · (−x)

= (8x−12)+(−2x2 +3x)

=−2x2 +11x?12.

Other examples are

5a(2a2 −3b) = 5a ·2a2 −5a ·3b = 10a3 −15ab

and

4
(

x− 1
2

)(
x+

13
2

)
= (4x−2)

(
x+

13
2

)

= (4x−2) · x+(4x−2) · 13
2

= 4x2 −2x+26x−13 = 4x2 +24x−13.

� Factoring polynomials

We define factoring a polynomial as decomposing it into a pure product of (as
many as possible) factors. Note that our given polynomial V (x) itself does not
change: we just shift its appearance to a pure product. Our trinomial V (x) =
−2x2+11x−12 just shifts its appearance to the pure product V (x)= (2x−3)(4−x)
when factored. It merely shows that the product (2x− 3)(4− x) is a factorization
of the trinomial −2x2 +11x−12.


